Math 323 - Formal Mathematical Reasoning and Writing Problem Session Wednesday, 4/22/15

1. Construct a function that is:

- (a) Injective, but not surjective.
- (b) Surjective, but not injective.
- (c) Neither injective nor surjective.

2. ¹ Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by f(n) = 2n, and let $g : \mathbb{Z} \to \mathbb{Z}$ be defined by

$$g(m) := \begin{cases} \frac{m}{2} & \text{if } m \text{ is even} \\ 34 & \text{if } m \text{ is odd} \end{cases}.$$

- (a) Calculate $(g \circ f)(n)$.
- (b) Is $g(n) = f^{-1}(n)$?

3. The following statements are false.

- (i) If $f : A \to B$ and $g : B \to C$ are functions and $g \circ f$ is injective, then f is injective and g is injective.
- (ii) If $f : A \to B$ and $g : B \to C$ are functions and $g \circ f$ is surjective, then f is surjective and g is surjective.
- (a) How would you *show* that these statements are false?
- (b) Correct the statements so they are true.
- 4. ² Let $A = \{1, 2, 3\}$. Let $Bij(A) = \{f : A \to A \mid f(x) \text{ is a bijection}\}$. Define a relation on Bij A by $f \sim g$ if and only if

$$\exists b \in \operatorname{Bij}(A)$$
 such that $g = b^{-1} \circ f \circ b$

- (a) List all the elements of Bij(A) by drawing them as arrow diagrams.
- (b) Prove that the relation \sim defined above is an equivalence relation.
- (c) Find $\operatorname{Bij}(A)/\sim$.

¹http://math.sfsu.edu/federico/Clase/Math301.S10/book.pdf, Example 9.8 ²Madden $\S11.5 \#7$