Math 323 - Formal Mathematical Reasoning and Writing
 Problem Session
 Wednesday, 4/22/15

1. Construct a function that is:
(a) Injective, but not surjective.
(b) Surjective, but not injective.
(c) Neither injective nor surjective.
2. ${ }^{1}$ Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(n)=2 n$, and let $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by

$$
g(m):=\left\{\begin{array}{ll}
\frac{m}{2} & \text { if } m \text { is even } \\
34 & \text { if } m \text { is odd }
\end{array} .\right.
$$

(a) Calculate $(g \circ f)(n)$.
(b) Is $g(n)=f^{-1}(n)$?
3. The following statements are false.
(i) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions and $g \circ f$ is injective, then f is injective and g is injective.
(ii) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions and $g \circ f$ is surjective, then f is surjective and g is surjective.
(a) How would you show that these statements are false?
(b) Correct the statements so they are true.
4. ${ }^{2}$ Let $A=\{1,2,3\}$. Let $\operatorname{Bij}(A)=\{f: A \rightarrow A \mid f(x)$ is a bijection $\}$. Define a relation on $\operatorname{Bij} A$ by $f \sim g$ if and only if

$$
\exists b \in \operatorname{Bij}(A) \text { such that } g=b^{-1} \circ f \circ b
$$

(a) List all the elements of $\operatorname{Bij}(A)$ by drawing them as arrow diagrams.
(b) Prove that the relation \sim defined above is an equivalence relation.
(c) Find $\operatorname{Bij}(A) / \sim$.

[^0]
[^0]: ${ }^{1}$ http://math.sfsu.edu/federico/Clase/Math301.S10/book.pdf, Example 9.8
 ${ }^{2}$ Madden §11.5 \#7

